metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[[bis[(2,2'-bipyridine- $\kappa^2 N, N')$ cadmium(II)]-bis[μ_3 -3-(4-carboxylatophenoxy)propionato- $\kappa^5 O, O': O':$ -O",O""]] 4-hydroxybenzoic acid monohydrate]

Li-Li Kong.^a Shan Gao.^a Li-Hua Huo^a and Seik Weng Ng^{b*}

^aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 23 October 2007; accepted 30 October 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.040; wR factor = 0.120; data-to-parameter ratio = 14.7.

The 3-(4-carboxylatophenoxy)propionate dianion in the title compound, $[Cd_2(C_{10}H_8O_5)_2(C_{10}H_8N_2)_2] \cdot C_7H_6O_3 \cdot H_2O$, links adjacent metal atoms into a chain, the dianion chelating through both O atoms of its two $-CO_2^-$ end groups. One of the carboxylate O atoms (that belonging to the aliphatic carboxylate end) engages in interchain coordination, linking two chains into a ribbon. The ribbons are linked to the disordered water molecule and 4-hydroxybenzoic acid by O- $H \cdots O$ hydrogen bonds, further consolidating the ribbon motif. The Cd^{II} atom exists in a seven-coordinate CdN₂O₅ enviroment that approximates to a monocapped octahedron. The dinuclear repeat unit is centrosymmetric.

Related literature

For 2,2'-bipyridine-chelated transition metal derivatives of 3-(4-carboxylatophenoxy)propionic acid, see: Kong et al. (2007a,b).

Experimental

Crystal data

$[Cd_2(C_{10}H_8O_5)_2(C_{10}H_8N_2)_2]$	$\beta = 82.174 \ (1)^{\circ}$
$C_7H_6O_3\cdot H_2O$	$\gamma = 88.734 \ (1)^{\circ}$
$M_r = 1109.63$	$V = 1110.6 (1) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 1
a = 10.1615 (5) Å	Mo $K\alpha$ radiation
b = 10.6255 (5) Å	$\mu = 1.03 \text{ mm}^{-1}$
c = 10.8507 (6) Å	T = 295 (2) K
$\alpha = 73.147 \ (2)^{\circ}$	$0.32 \times 0.24 \times 0.16 \text{ mm}$

Data collection

Rigaku RAXIS-RAPID diffractometer Absorption correction: multi-scan (ABSCOR: Higashi, 1995) $T_{\min} = 0.542, T_{\max} = 0.852$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	4 restraints
$wR(F^2) = 0.120$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 1.13 \text{ e } \text{\AA}^{-3}$
5010 reflections	$\Delta \rho_{\rm min} = -0.87 \ {\rm e} \ {\rm \AA}^{-3}$
341 parameters	

10857 measured reflections

 $R_{\rm int} = 0.042$

5010 independent reflections

3997 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Cd1-O1	2.511 (4)	Cd1-O5 ⁱⁱ	2.370 (3)
Cd1-O2	2.345 (3)	Cd1-N1	2.339 (3)
Cd1-O2 ⁱ	2.406 (3)	Cd1-N2	2.323 (4)
Cd1–O4 ⁱⁱ	2.351 (3)		

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x - 1, y, z + 1.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D7 - H70 \cdots O1w^{iii}$ $D8 - H80 \cdots O1$ $D1w - H1w \cdots O1^{iv}$ $D1w - H2w \cdots O8$	0.82 0.82 0.82 0.82	1.75 2.01 1.98 2.11	2.55 (1) 2.815 (8) 2.797 (8) 2.93 (1)	166 168 171 172

Symmetry codes: (iii) x - 1, y, z; (iv) -x + 1, -y + 2, -z + 1.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001), OLEX (Dolomanov et al., 2003); software used to prepare material for publication: publCIF (Westrip, 2007).

We thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2610).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.
- Higashi, T. (1995). ABSCOR. Rigaku, Tokyo, Japan.
- Kong, L.-L., Gao, S., Huo, L.-H. & Ng, S. W. (2007*a*). Acta Cryst. E63, m2851. Kong, L.-L., Gao, S., Huo, L.-H. & Ng, S. W. (2007*b*). Acta Cryst. E63, m2852.

Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Westrip, S. P. (2007). publCIF. In preparation.

Acta Cryst. (2007). E63, m2938-m2939 [doi:10.1107/S1600536807054669]

Poly[[[bis[(2,2'-bipyridine- $\kappa^2 N, N'$)cadmium(II)]-bis[μ_3 -3-(4-carboxylatophenoxy)propionato- $\kappa^5 O, O': O': O'', O'''$]] 4-hydroxybenzoic acid monohydrate]

L.-L. Kong, S. Gao, L.-H. Huo and S. W. Ng

Comment

The present study on the title compound, (I), follows reports on the transition metal derivatives of 3-(4-carboxylatophenoxy)propionic acid. These (Kong *et al.*, 2007*a*,b) describe the isostrutural manganese(II) and cobalt(II) adducts with 2,2'-bipyridine. With cadmium nitrate as reactant and by using a hydrothermal method, part of the carboxylic acid is hydrolyzed to give 4-hydroxybenzoic acid, which is then incorporated into the crystal structure (Fig. 1). Topologically, a double ribbon polyer is formed (Fig. 2).

The cadmium(II) atom in (I) exists in a seven-coordinate CdN_2O_5 environment (Fig. 3) that approximates to a monocapped octahedron (Table 1) and a network of O—H···O hydrogen bonds (Table 2) helps to consolidate the structure.

Experimental

Cadmium dinitrate tetrahydrate (2 mmol), 2,2'-bipyridine (2 mmol) and 3-(4-carboxylatophenoxy)propionic acid (2 mmol) and water were sealed in a 25-ml, Teflon-lined, stainless steel bomb and heated at 413 K for 20 h. The bomb was cooled to room temperature; the colorless crystals that separated was picked out manually.

Refinement

The water and 4-hydroxybenzoic acid molecules are disordered about a center-of-inversion; the molecules were assigned half-occupancy each. The phenylene ring was refined as a rigid hexagon of 1.39 Å sides. The four-atom -C(=O)–O fragment was restrained to be nearly planar; the two C–O distances were restrained to 1.25±0.01 Å and the C–C single-bond distance to 1.50±-0.01 Å.

Carbon-bound H atoms were placed in calculated positions [C—H 0.93–0.97 Å and U_{iso} (H) 1.2 U_{eq} (C)], and were included in the refinement in the riding-model approximation. The carboxylic acid and water H-atoms were similarly generated [O–H 0.82 Å and and U_{iso} (H) 1.2 U_{eq} (O)].

The final difference Fourier map had a large peak near Cd1, but was otherwise essentially featureless.

Figures

Fig. 1. Figure 1. View of a fragment of (I); displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. Symmetry codes are given in Table 1.

Fig. 2. Figure 2. A representation of the polymeric double ribbon structure in (I).

Fig. 3. Figure 3. Seven-coordinate geometry of cadmium in (I).

Poly[[[bis[(2,2'-bipyridine- $\kappa^2 N, N'$)cadmium(II)]- bis[μ_3 -3-(4-carboxylatophenoxy)propionato- $\kappa^5 O, O': O': O'', O'''$]] 4-hydroxybenzoic acid monohydrate]

Crystal data

$[Cd_2(C_{10}H_8O_5)_2(C_{10}H_8N_2)_2]\cdot C_7H_6O_3\cdot H_2O$	Z = 1
$M_r = 1109.63$	$F_{000} = 558$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.659 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 10.1615 (5) Å	Cell parameters from 8754 reflections
b = 10.6255 (5) Å	$\theta = 3.0-27.5^{\circ}$
c = 10.8507 (6) Å	$\mu = 1.03 \text{ mm}^{-1}$
$\alpha = 73.147 \ (2)^{\circ}$	T = 295 (2) K
$\beta = 82.174 \ (1)^{\circ}$	Block, colorless
$\gamma = 88.734 \ (1)^{\circ}$	$0.32\times0.24\times0.16~mm$
$V = 1110.6 (1) \text{ Å}^3$	

Data collection

Rigaku RAXIS-RAPID diffractometer	5010 independent reflections
Radiation source: fine-focus sealed tube	3997 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 295(2) K	$\theta_{\min} = 3.0^{\circ}$
ω–scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -11 \rightarrow 13$
$T_{\min} = 0.542, \ T_{\max} = 0.852$	$l = -14 \rightarrow 14$
10857 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 1.4148P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
5010 reflections	$\Delta \rho_{max} = 1.13 \text{ e} \text{ Å}^{-3}$
341 parameters	$\Delta \rho_{min} = -0.87 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	
4 restraints Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cd1	0.42672 (3)	0.67472 (3)	0.96257 (3)	0.04096 (12)	
01	0.4806 (4)	0.6852 (4)	0.7269 (3)	0.0713 (11)	
02	0.4891 (3)	0.5017 (3)	0.8745 (3)	0.0503 (7)	
O3	0.7194 (3)	0.5162 (4)	0.4709 (3)	0.0528 (8)	
O4	1.2813 (3)	0.7051 (3)	0.1393 (3)	0.0524 (8)	
05	1.1998 (3)	0.6081 (3)	0.0120 (3)	0.0501 (8)	
N1	0.6322 (3)	0.7835 (4)	0.9263 (3)	0.0422 (8)	
N2	0.3986 (3)	0.8980 (4)	0.8686 (4)	0.0506 (9)	
C1	0.5078 (4)	0.5672 (5)	0.7584 (4)	0.0423 (10)	
C2	0.5637 (4)	0.5052 (6)	0.6544 (4)	0.0544 (12)	
H2A	0.4973	0.5069	0.5976	0.065*	
H2B	0.5831	0.4139	0.6948	0.065*	
C3	0.6886 (4)	0.5747 (5)	0.5741 (4)	0.0501 (11)	
H3A	0.6738	0.6681	0.5399	0.060*	
H3B	0.7606	0.5627	0.6264	0.060*	
C4	0.8339 (4)	0.5545 (4)	0.3857 (4)	0.0366 (8)	
C5	0.9291 (4)	0.6386 (5)	0.4003 (4)	0.0470 (10)	
Н5	0.9163	0.6751	0.4692	0.056*	
C6	1.0433 (4)	0.6675 (5)	0.3111 (4)	0.0450 (10)	
H6	1.1087	0.7219	0.3218	0.054*	
C7	1.0620 (4)	0.6166 (4)	0.2057 (4)	0.0357 (8)	
C8	0.9646 (4)	0.5349 (4)	0.1924 (4)	0.0407 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H8	0.9758	0.4997	0.1227	0.049*	
C9	0.8502 (4)	0.5047 (5)	0.2819 (4)	0.0466 (10)	
Н9	0.7846	0.4506	0.2712	0.056*	
C10	1.1891 (4)	0.6454 (4)	0.1128 (4)	0.0383 (9)	
C11	0.7459 (4)	0.7223 (5)	0.9483 (5)	0.0507 (11)	
H11	0.7436	0.6317	0.9860	0.061*	
C12	0.8668 (5)	0.7873 (6)	0.9178 (6)	0.0690 (15)	
H12	0.9449	0.7416	0.9333	0.083*	
C13	0.8693 (5)	0.9193 (6)	0.8645 (8)	0.096 (3)	
H13	0.9498	0.9657	0.8426	0.115*	
C14	0.7518 (5)	0.9853 (5)	0.8427 (7)	0.0749 (18)	
H14	0.7521	1.0764	0.8090	0.090*	
C15	0.6343 (4)	0.9139 (4)	0.8718 (4)	0.0405 (9)	
C16	0.5054 (4)	0.9786 (4)	0.8424 (4)	0.0391 (9)	
C17	0.4953 (5)	1.1124 (5)	0.7919 (5)	0.0555 (12)	
H17	0.5702	1.1667	0.7754	0.067*	
C18	0.3730 (5)	1.1661 (5)	0.7658 (6)	0.0638 (14)	
H18	0.3644	1.2565	0.7322	0.077*	
C19	0.2654 (5)	1.0838 (6)	0.7902 (6)	0.0750 (17)	
H19	0.1825	1.1169	0.7717	0.090*	
C20	0.2812 (5)	0.9547 (5)	0.8413 (6)	0.0717 (17)	
H20	0.2064	0.9001	0.8594	0.086*	
O1w	0.6482 (8)	1.1595 (8)	0.4750 (9)	0.077 (2)	0.50
H1w	0.6162	1.2113	0.4151	0.092*	0.50
H2w	0.6057	1.0901	0.4959	0.092*	0.50
O6	-0.1473 (12)	0.9220 (11)	0.5206 (16)	0.089 (4)	0.50
07	-0.1003 (11)	1.1321 (8)	0.4495 (14)	0.078 (5)	0.50
H7O	-0.1790	1.1487	0.4448	0.117*	0.50
08	0.4798 (7)	0.9246 (7)	0.5287 (8)	0.0657 (19)	0.50
H8O	0.4907	0.8528	0.5804	0.099*	0.50
C21	-0.0645 (10)	1.0142 (12)	0.4888 (14)	0.071 (8)	0.50
C22	0.0799 (7)	0.9884 (13)	0.4960 (19)	0.059 (6)	0.50
C23	0.1194 (8)	0.8635 (11)	0.5611 (16)	0.127 (14)	0.50
H23	0.0564	0.7964	0.5983	0.153*	0.50
C24	0.2532 (9)	0.8391 (6)	0.5707 (10)	0.074 (3)	0.50
H24	0.2796	0.7555	0.6143	0.089*	0.50
C25	0.3473 (6)	0.9395 (7)	0.5152 (8)	0.054 (2)	0.50
C26	0.3077 (8)	1.0643 (6)	0.4500 (8)	0.055 (2)	0.50
H26	0.3707	1.1315	0.4128	0.066*	0.50
C27	0.1740 (9)	1.0888 (9)	0.4404 (14)	0.066 (5)	0.50
H27	0.1476	1.1724	0.3968	0.079*	0.50
		2			
Atomic displace	ement parameters (Ų	<i>(</i>)			
	11		12	_ 13	_ 23

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03119 (16)	0.04466 (19)	0.04179 (19)	-0.00141 (12)	0.00713 (11)	-0.00967 (14)
01	0.081 (2)	0.080 (3)	0.040 (2)	0.030 (2)	0.0032 (17)	-0.0039 (18)
02	0.0553 (17)	0.0601 (19)	0.0309 (16)	0.0082 (15)	0.0077 (13)	-0.0127 (14)

O3	0.0361 (15)	0.083 (2)	0.0409 (17)	-0.0108 (15)	0.0124 (12)	-0.0284 (17)
O4	0.0339 (15)	0.066 (2)	0.058 (2)	-0.0112 (15)	0.0079 (13)	-0.0255 (17)
O5	0.0414 (16)	0.064 (2)	0.0483 (18)	-0.0108 (15)	0.0130 (13)	-0.0295 (16)
N1	0.0361 (17)	0.046 (2)	0.044 (2)	0.0026 (15)	-0.0018 (14)	-0.0144 (16)
N2	0.0370 (18)	0.051 (2)	0.057 (2)	-0.0029 (17)	0.0016 (16)	-0.0078 (19)
C1	0.0290 (18)	0.063 (3)	0.035 (2)	0.0069 (19)	-0.0027 (15)	-0.015 (2)
C2	0.039 (2)	0.091 (4)	0.033 (2)	-0.005 (2)	0.0071 (17)	-0.022 (2)
C3	0.037 (2)	0.077 (3)	0.035 (2)	0.003 (2)	0.0047 (17)	-0.018 (2)
C4	0.0277 (17)	0.045 (2)	0.034 (2)	0.0036 (16)	0.0028 (14)	-0.0099 (17)
C5	0.038 (2)	0.065 (3)	0.042 (2)	0.004 (2)	0.0039 (17)	-0.025 (2)
C6	0.035 (2)	0.058 (3)	0.045 (2)	-0.0091 (19)	0.0054 (17)	-0.025 (2)
C7	0.0322 (18)	0.036 (2)	0.036 (2)	0.0016 (16)	0.0032 (15)	-0.0087 (17)
C8	0.041 (2)	0.048 (2)	0.034 (2)	-0.0034 (18)	0.0062 (16)	-0.0185 (18)
C9	0.037 (2)	0.059 (3)	0.046 (3)	-0.011 (2)	0.0058 (17)	-0.022 (2)
C10	0.0299 (18)	0.038 (2)	0.043 (2)	0.0038 (16)	0.0025 (16)	-0.0093 (18)
C11	0.043 (2)	0.046 (2)	0.060 (3)	0.006 (2)	-0.010 (2)	-0.010 (2)
C12	0.039 (2)	0.063 (3)	0.102 (5)	0.004 (2)	-0.010 (3)	-0.020 (3)
C13	0.039 (3)	0.063 (4)	0.176 (8)	-0.007 (3)	-0.012 (4)	-0.019 (4)
C14	0.047 (3)	0.040 (3)	0.126 (6)	-0.002 (2)	-0.010 (3)	-0.009(3)
C15	0.040 (2)	0.038 (2)	0.045 (2)	0.0003 (17)	-0.0021 (17)	-0.0174 (19)
C16	0.044 (2)	0.039 (2)	0.034 (2)	0.0084 (18)	-0.0026 (16)	-0.0125 (17)
C17	0.057 (3)	0.041 (2)	0.068 (3)	0.002 (2)	-0.014 (2)	-0.013 (2)
C18	0.064 (3)	0.055 (3)	0.067 (4)	0.010 (3)	-0.018 (3)	-0.005 (3)
C19	0.051 (3)	0.074 (4)	0.084 (4)	0.017 (3)	-0.022 (3)	0.007 (3)
C20	0.042 (2)	0.055 (3)	0.104 (5)	0.003 (2)	-0.017 (3)	0.002 (3)
O1w	0.071 (5)	0.061 (5)	0.082 (6)	0.008 (5)	-0.024 (5)	0.011 (4)
O6	0.068 (6)	0.077 (8)	0.132 (12)	0.000 (6)	-0.044 (8)	-0.032 (7)
07	0.065 (6)	0.035 (5)	0.134 (13)	0.010 (5)	-0.022 (7)	-0.021 (7)
08	0.060 (4)	0.060 (4)	0.066 (5)	0.003 (4)	-0.008 (3)	0.000 (4)
C21	0.068 (10)	0.069 (19)	0.082 (17)	0.005 (11)	-0.027 (10)	-0.025 (13)
C22	0.059 (10)	0.065 (17)	0.053 (10)	-0.009 (10)	-0.011 (8)	-0.013 (10)
C23	0.12 (2)	0.14 (2)	0.092 (18)	-0.026 (17)	-0.050 (17)	0.025 (16)
C24	0.069 (7)	0.048 (6)	0.098 (10)	0.004 (6)	-0.035 (7)	0.000 (6)
C25	0.062 (6)	0.050 (6)	0.044 (5)	0.002 (5)	-0.007 (4)	-0.004 (5)
C26	0.060 (6)	0.044 (5)	0.056 (6)	0.003 (4)	-0.004 (5)	-0.009 (4)
C27	0.079 (11)	0.045 (8)	0.066 (9)	0.001 (7)	-0.007 (7)	-0.004 (6)

Geometric parameters (Å, °)

Cd1—O1	2.511 (4)	С9—Н9	0.9300
Cd1—O2	2.345 (3)	C11—C12	1.375 (7)
Cd1—O2 ⁱ	2.406 (3)	C11—H11	0.9300
Cd1—O4 ⁱⁱ	2.351 (3)	C12—C13	1.353 (8)
Cd1—O5 ⁱⁱ	2.370 (3)	С12—Н12	0.9300
Cd1—N1	2.339 (3)	C13—C14	1.385 (7)
Cd1—N2	2.323 (4)	С13—Н13	0.9300
O1—C1	1.236 (6)	C14—C15	1.378 (6)
O2—C1	1.241 (5)	C14—H14	0.9300

O2—Cd1 ⁱ	2.406 (3)	C15—C16	1.496 (6)
O3—C4	1.373 (4)	C16—C17	1.375 (6)
O3—C3	1.428 (5)	C17—C18	1.387 (7)
O4—C10	1.253 (5)	С17—Н17	0.9300
O4—Cd1 ⁱⁱⁱ	2.351 (3)	C18—C19	1.363 (8)
O5—C10	1.257 (5)	C18—H18	0.9300
O5—Cd1 ⁱⁱⁱ	2.370 (3)	C19—C20	1.338 (8)
N1—C11	1.329 (5)	С19—Н19	0.9300
N1—C15	1.339 (5)	C20—H20	0.9300
N2—C16	1.345 (5)	O1w—H1w	0.8200
N2—C20	1.354 (6)	O1w—H2w	0.8200
C1—C2	1.507 (6)	O6—C21	1.244 (9)
C2—C3	1.511 (6)	O7—C21	1.263 (9)
C2—H2A	0.9700	07—Н7О	0.8200
C2—H2B	0.9700	O8—C25	1.375 (9)
С3—НЗА	0.9700	O8—H8O	0.8200
С3—Н3В	0.9700	C21—C22	1.495 (8)
C4—C9	1.366 (6)	C22—C23	1.3900
C4—C5	1.386 (6)	C22—C27	1.3900
C5—C6	1.385 (5)	C23—C24	1.3900
С5—Н5	0.9300	С23—Н23	0.9300
C6—C7	1.390 (6)	C24—C25	1.3900
С6—Н6	0.9300	C24—H24	0.9300
C7—C8	1.379 (6)	C25—C26	1.3900
C7—C10	1.505 (5)	C26—C27	1.3900
C8—C9	1.388 (5)	С26—Н26	0.9300
C8—H8	0.9300	С27—Н27	0.9300
N2—Cd1—N1	71.09 (12)	С7—С8—Н8	119.6
N2—Cd1—O2	132.62 (13)	С9—С8—Н8	119.6
N1—Cd1—O2	99.56 (12)	C4—C9—C8	120.0 (4)
N2—Cd1—O4 ⁱⁱ	84.69 (13)	С4—С9—Н9	120.0
N1—Cd1—O4 ⁱⁱ	114.25 (11)	С8—С9—Н9	120.0
O2—Cd1—O4 ⁱⁱ	137.28 (11)	O4—C10—O5	122.2 (4)
N2—Cd1—O5 ⁱⁱ	98.40 (12)	O4—C10—C7	118.6 (4)
N1—Cd1—O5 ⁱⁱ	166.81 (11)	O5—C10—C7	119.2 (4)
O2—Cd1—O5 ⁱⁱ	93.44 (11)	N1—C11—C12	122.8 (5)
O4 ⁱⁱ —Cd1—O5 ⁱⁱ	55.46 (10)	N1—C11—H11	118.6
N2—Cd1—O2 ⁱ	150.29 (13)	C12—C11—H11	118.6
N1—Cd1—O2 ⁱ	88.75 (12)	C13—C12—C11	118.3 (5)
O2—Cd1—O2 ⁱ	70.79 (12)	C13—C12—H12	120.9
O4 ⁱⁱ —Cd1—O2 ⁱ	84.10 (11)	C11—C12—H12	120.9
O5 ⁱⁱ —Cd1—O2 ⁱ	97.67 (11)	C12-C13-C14	119.9 (5)
N2—Cd1—O1	80.37 (14)	C12—C13—H13	120.1
N1—Cd1—O1	83.43 (13)	C14—C13—H13	120.1
O2—Cd1—O1	52.26 (12)	C15-C14-C13	118.9 (5)

O4 ⁱⁱ —Cd1—O1	151.63 (12)	C15—C14—H14	120.5
O5 ⁱⁱ —Cd1—O1	103.05 (12)	C13—C14—H14	120.5
O2 ⁱ —Cd1—O1	119.78 (11)	N1—C15—C14	120.9 (4)
C1—O1—Cd1	89.9 (3)	N1—C15—C16	117.7 (4)
C1—O2—Cd1	97.7 (3)	C14—C15—C16	121.4 (4)
C1—O2—Cd1 ⁱ	144.3 (3)	N2—C16—C17	121.5 (4)
Cd1—O2—Cd1 ⁱ	109.21 (12)	N2—C16—C15	116.1 (4)
C4—O3—C3	119.1 (3)	C17—C16—C15	122.5 (4)
C10—O4—Cd1 ⁱⁱⁱ	91.5 (2)	C16—C17—C18	119.6 (5)
C10	90.5 (2)	C16—C17—H17	120.2
C11—N1—C15	119.2 (4)	C18—C17—H17	120.2
C11—N1—Cd1	123.7 (3)	C19—C18—C17	118.8 (5)
C15—N1—Cd1	116.9 (3)	С19—С18—Н18	120.6
C16—N2—C20	116.9 (4)	С17—С18—Н18	120.6
C16—N2—Cd1	118.1 (3)	C20—C19—C18	118.8 (5)
C20—N2—Cd1	124.9 (3)	С20—С19—Н19	120.6
O1—C1—O2	119.9 (4)	C18—C19—H19	120.6
O1—C1—C2	119.1 (4)	C19—C20—N2	124.5 (5)
O2—C1—C2	121.0 (4)	С19—С20—Н20	117.8
C1—C2—C3	112.5 (4)	N2—C20—H20	117.8
C1—C2—H2A	109.1	H1w—O1w—H2w	108.2
C3—C2—H2A	109.1	С21—О7—Н7О	120.0
C1—C2—H2B	109.1	O6—C21—O7	120.8 (10)
C3—C2—H2B	109.1	O6—C21—C22	120.9 (9)
H2A—C2—H2B	107.8	O7—C21—C22	118.2 (10)
O3—C3—C2	105.8 (4)	C23—C22—C27	120.0
O3—C3—H3A	110.6	C23—C22—C21	119.5 (6)
С2—С3—НЗА	110.6	C27—C22—C21	120.5 (6)
O3—C3—H3B	110.6	C22—C23—C24	120.0
С2—С3—Н3В	110.6	С22—С23—Н23	120.0
НЗА—СЗ—НЗВ	108.7	C24—C23—H23	120.0
C9—C4—O3	115.8 (4)	C25—C24—C23	120.0
C9—C4—C5	120.5 (4)	C25—C24—H24	120.0
O3—C4—C5	123.7 (4)	C23—C24—H24	120.0
C6—C5—C4	119.1 (4)	O8—C25—C26	116.9 (6)
С6—С5—Н5	120.4	O8—C25—C24	123.0 (6)
С4—С5—Н5	120.4	C26—C25—C24	120.0
C5—C6—C7	121.0 (4)	C25—C26—C27	120.0
С5—С6—Н6	119.5	C25—C26—H26	120.0
С7—С6—Н6	119.5	C27—C26—H26	120.0
C8—C7—C6	118.6 (3)	C26—C27—C22	120.0
C8—C7—C10	121.3 (4)	С26—С27—Н27	120.0
C6—C7—C10	120.0 (4)	С22—С27—Н27	120.0
C7—C8—C9	120.8 (4)		
N2-Cd1-O1-C1	176.3 (3)	C4—C5—C6—C7	1.8 (7)
N1—Cd1—O1—C1	104.5 (3)	C5—C6—C7—C8	-0.7 (7)
O2—Cd1—O1—C1	-3.0 (2)	C5—C6—C7—C10	-177.8 (4)

O4 ⁱⁱ —Cd1—O1—C1	-124.5 (3)	C6—C7—C8—C9	0.3 (7)
O5 ⁱⁱ —Cd1—O1—C1	-87.2 (3)	C10—C7—C8—C9	177.3 (4)
O2 ⁱ —Cd1—O1—C1	19.7 (3)	O3—C4—C9—C8	-178.2 (4)
N2—Cd1—O2—C1	2.2 (3)	C5—C4—C9—C8	2.1 (7)
N1—Cd1—O2—C1	-70.9 (3)	C7—C8—C9—C4	-1.0 (7)
O4 ⁱⁱ —Cd1—O2—C1	146.4 (2)	Cd1 ⁱⁱⁱ —O4—C10—O5	-6.1 (4)
O5 ⁱⁱ —Cd1—O2—C1	106.9 (3)	Cd1 ⁱⁱⁱ —O4—C10—C7	173.3 (3)
O2 ⁱ —Cd1—O2—C1	-156.2 (3)	Cd1 ⁱⁱⁱ —O5—C10—O4	6.0 (4)
O1—Cd1—O2—C1	3.0 (2)	Cd1 ⁱⁱⁱ —O5—C10—C7	-173.3 (3)
N2—Cd1—O2—Cd1 ⁱ	158.33 (13)	C8—C7—C10—O4	-170.3 (4)
N1—Cd1—O2—Cd1 ⁱ	85.29 (14)	C6—C7—C10—O4	6.7 (6)
O4 ⁱⁱ —Cd1—O2—Cd1 ⁱ	-57.5 (2)	C8—C7—C10—O5	9.1 (6)
O5 ⁱⁱ —Cd1—O2—Cd1 ⁱ	-96.93 (14)	C6—C7—C10—O5	-173.9 (4)
O2 ⁱ —Cd1—O2—Cd1 ⁱ	0.0	C15—N1—C11—C12	0.2 (7)
O1—Cd1—O2—Cd1 ⁱ	159.2 (2)	Cd1—N1—C11—C12	175.3 (4)
N2—Cd1—N1—C11	-175.4 (4)	N1-C11-C12-C13	0.8 (9)
O2—Cd1—N1—C11	-43.5 (4)	C11—C12—C13—C14	0.2 (11)
O4 ⁱⁱ —Cd1—N1—C11	109.8 (4)	C12—C13—C14—C15	-2.2 (12)
O5 ⁱⁱ —Cd1—N1—C11	146.3 (5)	C11—N1—C15—C14	-2.3 (7)
O2 ⁱ —Cd1—N1—C11	26.8 (4)	Cd1—N1—C15—C14	-177.7 (4)
O1-Cd1-N1-C11	-93.4 (4)	C11—N1—C15—C16	177.0 (4)
N2-Cd1-N1-C15	-0.2 (3)	Cd1—N1—C15—C16	1.6 (5)
O2-Cd1-N1-C15	131.7 (3)	C13—C14—C15—N1	3.3 (9)
O4 ⁱⁱ —Cd1—N1—C15	-75.1 (3)	C13-C14-C15-C16	-176.0 (6)
O5 ⁱⁱ —Cd1—N1—C15	-38.5 (7)	C20-N2-C16-C17	0.8 (7)
O2 ⁱ —Cd1—N1—C15	-158.0 (3)	Cd1—N2—C16—C17	-177.2 (3)
O1-Cd1-N1-C15	81.8 (3)	C20—N2—C16—C15	-179.3 (5)
N1-Cd1-N2-C16	-1.4 (3)	Cd1—N2—C16—C15	2.6 (5)
O2-Cd1-N2-C16	-87.0 (3)	N1-C15-C16-N2	-2.9 (6)
O4 ⁱⁱ —Cd1—N2—C16	116.5 (3)	C14—C15—C16—N2	176.5 (5)
O5 ⁱⁱ —Cd1—N2—C16	170.4 (3)	N1-C15-C16-C17	177.0 (4)
O2 ⁱ —Cd1—N2—C16	48.3 (4)	C14—C15—C16—C17	-3.7 (7)
O1-Cd1-N2-C16	-87.7 (3)	N2-C16-C17-C18	-0.8 (7)
N1-Cd1-N2-C20	-179.2 (5)	C15—C16—C17—C18	179.4 (5)
O2-Cd1-N2-C20	95.2 (5)	C16—C17—C18—C19	-0.4 (8)
O4 ⁱⁱ —Cd1—N2—C20	-61.3 (5)	C17-C18-C19-C20	1.5 (10)
O5 ⁱⁱ —Cd1—N2—C20	-7.4 (5)	C18—C19—C20—N2	-1.5 (11)
O2 ⁱ —Cd1—N2—C20	-129.5 (5)	C16—N2—C20—C19	0.3 (9)
O1-Cd1-N2-C20	94.5 (5)	Cd1—N2—C20—C19	178.2 (5)
Cd1—O1—C1—O2	5.2 (4)	O6—C21—C22—C23	-12.1 (9)
Cd1—O1—C1—C2	-174.7 (3)	O7—C21—C22—C23	167.9 (9)
Cd1—O2—C1—O1	-5.6 (4)	O6—C21—C22—C27	169.2 (9)
Cd1 ⁱ —O2—C1—O1	-144.9 (4)	O7—C21—C22—C27	-10.8 (9)
Cd1—O2—C1—C2	174.3 (3)	C27—C22—C23—C24	0.0

Cd1 ⁱ —O2—C1—C2	35.1 (7)	C21—C22—C23—C24	-178.7 (10)
O1—C1—C2—C3	56.4 (6)	C22—C23—C24—C25	0.0
O2—C1—C2—C3	-123.5 (5)	C23—C24—C25—O8	175.3 (10)
C4—O3—C3—C2	-176.0 (4)	C23—C24—C25—C26	0.0
C1—C2—C3—O3	-172.8 (4)	O8—C25—C26—C27	-175.6 (10)
C3—O3—C4—C9	-173.5 (4)	C24—C25—C26—C27	0.0
C3—O3—C4—C5	6.2 (6)	C25—C26—C27—C22	0.0
C9—C4—C5—C6	-2.5 (7)	C23—C22—C27—C26	0.0
O3—C4—C5—C6	177.8 (4)	C21—C22—C27—C26	178.7 (10)
		1	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) *x*-1, *y*, *z*+1; (iii) *x*+1, *y*, *z*-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O7—H7o…O1w ^{iv}	0.82	1.75	2.55 (1)	166
O8—H8o…O1	0.82	2.01	2.815 (8)	168
$O1w$ — $H1w$ ···O 1^v	0.82	1.98	2.797 (8)	171
O1w—H2w···O8	0.82	2.11	2.93 (1)	172
Symmetry codes: (iv) $x-1$, y , z ; (v) $-x+1$, $-y+2$, $-z+1$.				

Fig. 3

